Alfa, a provider of software and services to the asset finance industry, has released its second paper on artificial intelligence (AI) in the sector in as many years.
Part 2: Using Machine Learning in the Wild is a more technical follow-up to 2019’s Part 1: Balancing Risk and Reward exploring in detail two specific use cases which take very different approaches to machine learning implementation.
The 16-page document includes a foreword by Blaise Thomson, whose start-up VocalIQ was acquired by Apple and formed an important part of the Siri development team.
Martyn Tamerlane, a Solution Architect at Alfa and co-author of the paper, said: “AI and machine learning are front and centre in the asset finance conversation at the moment, but many don’t know where to start – how much expertise they need, what they can outsource, and where they should concentrate their efforts and costs.
“Our worked-through examples convey genuinely useful and practically applicable advice for people wanting to kick off their own machine learning projects. By comparing the approaches used, we offer advice on what’s right for others.”
Maurice Buckberry, the other co-author of the report, has been both Senior Software
Engineer and Senior Solution Engineer at Alfa.
How well do you really know your competitors?
Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.
Thank you!
Your download email will arrive shortly
Not ready to buy yet? Download a free sample
We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form
By GlobalDataThe first example, which addresses automated licence plate recognition and its ongoing embedding in business processes, takes an off-the-shelf approach to training machine-learning models, drawing heavily on tools provided by AWS.
Meanwhile the second, which analyses Alfa’s internal code tests, is carried out wholly in-house with existing resources and knowledge. The paper also features a decision aid to help readers clarify how their projects might compare, Alfa added.
Balancing Risk and Reward, released in October 2019, outlined the high-risk, high-reward nature of using AI in the asset finance and leasing sectors and machine learning in particular.
Alfa said it will continue its commentary on AI in asset finance with further upcoming publications.